Por favor, use este identificador para citar o enlazar este ítem: http://www.dspace.uce.edu.ec/handle/25000/18396
Título : Compressed kNN: K-Nearest Neighbors with Data Compression
Autor : Salvador, Jaime
Ruiz, Zoila
García, José
Palabras clave : classification
categorical data
feature pre-processing
Fecha de publicación : 28-feb-2019
Editorial : Quito
Citación : Salvador J., Ruiz Z., Garcia J., (2019). Compressed kNN: K-Nearest Neighbors with Data Compression. Entropy, 21(3): 234. doi:10.3390/e21030234
Resumen : The kNN (k-nearest neighbors) classification algorithm is one of the most widely used non-parametric classification methods, however it is limited due to memory consumption related to the size of the dataset, which makes them impractical to apply to large volumes of data. Variations of this method have been proposed, such as condensed KNN which divides the training dataset into clusters to be classified, other variations reduce the input dataset in order to apply the algorithm. This paper presents a variation of the kNN algorithm, of the type structure less NN, to work with categorical data. Categorical data, due to their nature, can be compressed in order to decrease the memory requirements at the time of executing the classification. The method proposes a previous phase of compression of the data to then apply the algorithm on the compressed data. This allows us to maintain the whole dataset in memory which leads to a considerable reduction of the amount of memory required. Experiments and tests carried out on known datasets show the reduction in the volume of information stored in memory and maintain the accuracy of the classification. They also show a slight decrease in processing time because the information is decompressed in real time (on-the-fly) while the algorithm is running.
URI : http://www.dspace.uce.edu.ec/handle/25000/18396
ISSN : 1099-4300
Aparece en las colecciones: Artículos Indexados

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
94 2019 Compressed kNN K-Nearest Neighbors with Data Compression.pdf868.54 kBAdobe PDFVisualizar/Abrir

Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.